Synthesis and Reactivity of the Tetrakis(acetonitrile)nitrosylrhodium Dication

By Neil G. Connelly,* Peter T. Draggett, Michael Green,* and Thomas A. Kuc, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

The salts [NO][X] (X = BF₄ or PF₆) react with [Rh(1.5-C₈H₁₂)(NCMe)₂][X] or [Rh(1.5-C₈H₁₂)₂][X] in acetonitrile to give [Rh(NCMe)₄(NO)][X]²₂(1), and with [{Rh(1,5-C₈H₁₂)Cl}₂] or [{Rh(CO)₂Cl}₂] to give [RhCl(NCMe)₃-(NO)][X] (2). Complexes (1), with L, Ph₂PCH₂CH₂PPh₂ (dppe), Na[S₂CNMe₂] 2H₂O, and CO afford [Rh- $(NCMe)_2(NO)L_2][X]_2$ [L = PPh₃ (3) or AsPh₃ (4)], [Rh(NO)(dppe)_2][X]_2 (5), [Rh(NO)(S_2CNMe_2)_3][X] (6), and $[Rh(CO)_2(NCMe)_2][X]$ (7) respectively. Complexes (2) react with PPh₃ to give $[RhCl(NCMe)(NO)(PPh_3)_2]$ -[X] (8) which may also be prepared from (3) and CI-. Excess of halide ion with (3), however, yields [RhY₂(NO)-(PPh₃)₂] (Y = CI or I), whereas Na[S₂CNR₂]·nH₂O give [Rh(PPh₃)₂(S₂CNR₂)₂][X] (R = Me or Et) with loss of the co-ordinated nitrosyl ligand. In the presence of PPh₃, (3) reacts with N_2H_4 to give [Rh(NO)(PPh₃)₃] (9). The analogous ¹⁵NO species have also been prepared and attempts have been made to assign the 'bent' or 'linear 'modes of bonding to the metal-nitrosyl groups on the basis of i.r. and ¹⁵N n.m.r. spectroscopy.

THE recent renewal of interest in metal nitrosyl complexes has, in the main, stemmed from the observation that nitrogen monoxide may bond to a transition metal in either a 'bent' (formally as [NO]⁻) or 'linear' (formally as [NO]⁺) fashion, and that the interconversion of 'bent' and 'linear' nitrosyls can occur via intra-molecular isomerisation. Such an interconversion, which formally leads to a change in metal oxidation state, viz. $M^{n+}(NO)^+ \Longrightarrow M^{(n+2)+}(NO)^-$, and also to a change in co-ordination geometry, may form the basis for catalytic reactions. In addition, the reactions of co-ordinated NO with molecules such as carbon monoxide (to give CO_2 and N_2O ¹ has stimulated interest in the use of metal nitrosyls in, for example, atmospheric pollution control.

In the case of rhodium and iridium complexes, where catalytic † reactions might be expected, relatively little is known. We therefore report details² of our studies on the preparation and reactivity of a series of rhodium nitrosyl complexes, which should enable a study to be made of the effects of varying the donor-acceptor properties of other ligands present on the mode of bonding of the nitrosyl ligand. We also describe the preparation of ¹⁵N-labelled complexes, using [¹⁵NO][BF₄], and their use in i.r. and ¹⁵N n.m.r. studies of the bending and straightening of the metal-nitrosyl linkage.

RESULTS

The addition of [NO][X] $(X = BF_4 \text{ or } PF_6)$ to either $[Rh(1,5-C_8H_{12})(NCMe)_2][X]$ or $[Rh(1,5-C_8H_{12})_2][BF_4]$ in acetonitrile resulted in the immediate formation of deep green solutions from which $[Rh(NCMe)_4(NO)][X]_2$ (1) were isolated as emerald-green crystals. The complexes were characterised by elemental analysis and conductivity measurements (Table 1) and by their i.r. spectra in Nujol which showed strong bands at 1758 $\rm cm^{-1}$ [v(NO)] and at 2 310 and 2 345 cm⁻¹ [ν (CN)]. The ¹H n.m.r. spectra of (1) in CD₃NO₂ showed one singlet at τ 7.40, due to co-ordinated acetonitrile, which rapidly decreased in intensity while a new singlet at τ 7.87, due to the free nitrile (τ 8.00 in CD₃NO₂), appeared. Whether decomposition, or exchange between co-ordinated nitrile and CD_3NO_2 , occurs is not clear, although a slight shift of the ' free ' nitrile peak from the τ value found for MeCN in CD₃NO₂ and a slight broadening of the peak suggest exchange. The ¹H n.m.r. spectra of (1) in CD₃CN also showed decay of the signal due to co-ordinated nitrile and growth of the signal due to free nitrile; when diethyl ether was added to the mixture, after 10-15 min $[Rh(NCCD_3)_4(NO)][X]_2$ could be isolated. Similar replacement could be carried out by dissolving (1) in Bu^tCN and, after several minutes, isolating [Rh(NCBu^t)₄-(NO)][X]₂ by diethyl ether precipitation. The t-butyl complex was also prepared directly from $[Rh(1,5-C_8H_{12})_2]$ -[X] and [NO][X] in ButCN, and was fully characterised (Tables 1 and 2). The ¹H n.m.r. spectrum of this complex in CD_3NO_2 showed one singlet at τ 8.41 which again decayed while growth of the singlet (τ 8.63) due to free nitrile (τ 8.67 in CD₃NO₂) occurred.

The chloro-bridged dimers $[{Rh(1,5-C_8H_{12})Cl}_2]$ and $[{Rh(CO)_{2}Cl}_{2}]$ also reacted with $[NO][PF_{5}]$ in MeCN to give $[RhCl(NCMe)_3(NO)][PF_6]$ (2) as a brown-green solid. The reaction between the cyclo-octadienerhodium complex and $[NO][PF_6]$ contrasts with that of NOCl in solvents such as CHCl₃ which affords the air-sensitive brown polymer $[{RhCl_2(NO)}_n]$, and with that between $[{Ir(1,5-C_8H_{12})Cl}_2]$ and NOCl which gives green [Ir(1,5-C₈H₁₂)Cl₂(NO)].³

The lability of the nitrile ligands in (1), suggested by the

¹ B. F. G. Johnson and S. Bhaduri, *J.C.S. Chem. Comm.*, 1974, 804; B. L. Haymore and J. A. Ibers, *J. Amer. Chem. Soc.*, 1974, 96, 3325; C. D. Meyer and R. Eisenberg, *ibid.*, 1976, 98, 1364. ² N. G. Connelly, M. Green, and T. A. Kuc, *J.C.S. Chem.*

³ G. R. Crooks and B. F. G. Johnson, J. Chem. Soc. (A), 1970, 1662.

 $[\]uparrow$ A solution of $[Rh(NCMe)_4(NO)][X]_2$ (X = BF₄ or PF₆) in MeNO₂ is an effective catalyst (room temperature) for the di-, tri-, and tetra-merisation of isobutylene (N. G. Connelly, P. T. Draggett, and M. Green, unpublished work).

Comm., 1974, 542.

		Vield	A a		Analyses ^b (%)	
Complex	Colour	(%)	$S cm^2 mol^{-1}$	с	H	N
$[Rh(NCMe)_{4}(NO)] [BF_{4}]_{2} (1)$	Emerald green	93		20.4(20.3)	2.7(2.4)	14.5 (14.8)
$[Rh(NCMe)_4(NO)][PF_6]_2$	Emerald green	92	153	16.6 (16.4)	2.4(2.1)	11.4 (11.9)
$[Rh(NCBu^{t})_{4}(NO)][PF_{6}]_{2}$	Green	90	155	31.3 (31.8)	4.8 (4.8)	9.3 (9.3)
$[RhCl(NCMe)_3(NO)][PF_6]$ (2)	Green-brown	86	76	17.4(16.5)	2.2(2.1)	12.6 (12.8) •
$[Rh(NCMe)_2(NO)(PPh_3)_2][PF_6]_2$	Olive green	93	152	47.1 (46.7)	3.6 (3.5)	4.5(4.1)'
$[Rh(NCMe)_{2}(NO)(PPh_{3})_{2}][BF_{4}]_{2}$ (3)	Olive green	91		52.6(52.6)	4.0(4.0)	4.2 (4.6)
$[Rh(AsPh_3)_2(NCMe)_2(NO)][BF_4]_2$ (4)	Olive green	94		47.7 (48.0)	3.6 (3.6)	4.2(4.2)
$[RhCl(NCMe)(NO)(PPh_3)_2][PF_6](8)$	Yellow-green	66	81	52.2(51.9)	4.3 (3.8)	2.7 (3.2) ª
$[Rh(NO)(dppe)_2][BF_4]_2(5)$	Green	83		56.3 (56.6)	4.3 (4.4)	1.4(1.3)
$[Rh(NO)(dppe)_2][PF_6]_2$	Green	86		51.3(51.2)	4.2 (4.0)	1.2(1.1)
$[Rh(NO)(S_2CNMe_2)_3][BF_4]$ (6)	Brown	54		18.4 (18.6)	3.1 (3.1)	9.5 (9.6)
$[Rh(NO)(S_2CNMe_2)_3][PF_6]$	Brown	31	41	17.1 (16.9)	3.0 (2.8)	8.9 (8.8
^a 10 ⁻⁴ mol dm ⁻³ in CH ₃ NO ₂ . ^b Calcula	ted values are give	en in pa	rentheses.	^e P 6.9 (7.1%);	Cl, 7.8 (8.1%).	^d P 10.4 (10.6%);

Cl 3.4 (4.0%).

appearance of the ¹H n.m.r. spectra, and (2) is confirmed by their reactions with a number of other ligands. Addition of excess of PPh₃ or AsPh₃ to acetonitrile solutions of (1), or to suspensions of (1) or (2) in CH_2Cl_2 , afforded green solutions from which $[Rh(NCMe)_2(NO)(PPh_3)_2][X]_2$ (3) [¹H n.m.r. (in CD₂Cl₂): τ 2.33 (br. m, 30 H, PPh₃) and 8.11 (s, 6 H, $CH_3CN)$],[Rh(AsPh₃)₂(NCMe)₂(NO)][X]₂ (4) [¹H n.m.r. (in CD₂Cl₂): 7 2.45 (br. m, 30, H, PPh₃), and 8.00 (s, 6 H, CH₃-CN)], and [RhCl(NCMe)(NO)(PPh₃)₂][PF₆] (8) [¹H n.m.r. (in 55 °C. The i.r. spectrum confirms the presence of the anion, X, and also showed an intense band at 1 545 cm⁻¹ assigned ² to v(NO). Although co-ordinated dithiocarbamate ligands absorb in the 1 510-1 560 cm⁻¹ region [v(CN)], thus making the assignment of v(NO) and v(CN) difficult, labelling of the complex with ¹⁵NO appears to bring about a shift in the position of the band at 1 545 cm⁻¹. The calculated value for $v(^{15}NO)$, based on a value of 1 545 cm⁻¹ for $v(^{14}NO)$, is 1517 cm⁻¹, somewhat lower than the band observed for

TABLE 2 Infrared data (cm⁻¹)^a for rhodium nitrosyl complexes

Complex	$\bar{v}(CN)$	$\bar{\nu}(^{14}NO)$	$\tilde{\nu}(^{15}\text{NO})$	$\vec{v}(^{14}NO)$ (corrected) b	⊽(¹⁵ NO) (calc.) °
$[Rh(NCMe)_{4}(NO)][BF_{4}]_{2}(1)$	$2\ 345,\ 2\ 325$	1 758	1 727	1 588	1 726
$[Rh(NCBu^{t})_{4}(NO)][PF_{6}]_{2}$	2 310	1 765		1595	
$[RhCl(NCMe)_{3}(NO)][PF_{6}]$ (2)	2 335, 2 310	1 700		1 590	
$[Rh(NCMe)_2(NO)(PPh_3)_2][BF_4]_2$ (3)	2 320, 2 350	1 734	1 705	1564	1 703
		1 703 ª			
$[Rh(AsPh_3)_2(NCMe)_2(NO)][BF_4]_2$ (4)	2 320, 2 300	1 720		1 550	
$[Rh(NO)(dppe)_2][BF_4]_2 (5)$		1 730	1 700	1 630	1 699
		1 718 ^d			
$[RhCl(NCMe)(NO)(PPh_3)_2][PF_6]$ (8)		1 698 •		1.588	
$[Rh(NO)(S_2CNMe_2)_3][BF_4]$ (6)		1 545	1 530	$1 \ 435$	1 517
$[RhCl_2(NO)(PPh_3)_2]$		1 632	1605	1 602	1 602
$[RhI_2(NO)(PPh_3)_2]$		1 626	1 598	1596	1 597
[Rh(NO)(PPh ₃) ₃]		1 610	1 578	1 600	1 582
	11			0.000 -(10100)	11 011 01

^a In Nujol unless otherwise stated. ^b By application of Ibers' rules.⁵ ^c From $\bar{\nu}$ ⁽¹⁵NO) = 0.982 $\bar{\nu}$ ⁽¹⁴NO). ^d In CH₂Cl₂. ^e In CHCl₃.

CD₂Cl₂): 7 2.46 (br. m, 30 H, PPh₃) and 8.52 (s, 3 H, CH₃CN)] were isolated as green crystalline solids. Complex (8) was also prepared by the addition of stoicheiometric amounts of $[N(PPh_3)_2]Cl$ to (2) in CH_2Cl_2 . Excess of halide in MeCN, however, afforded the known neutral species [RhY₂(NO)- $(PPh_3)_2$ (Y = Cl or I) in virtually quantitative yields.

Displacement of four acetonitrile ligands from (1) occurred with Ph₂PCH₂CH₂PPh₂ (dppe) and with [S₂CNMe₂]⁻. In acetonitrile or CH_2Cl_2 , dppe gave green $[Rh(NO)(dppe)_2][X]_2$ (5), whereas $[S_2CNMe_2]^-$ yielded a brown complex formulated on the basis of analytical data (C, H, and N) on both the $[BF_4]^- \mbox{ and } [PF_6]^- \mbox{ salts as } [Rh(NO)(S_2CNMe_2)_3][X] \mbox{ (6)}.$ The nature of (6) has not been conclusively established. The molar conductivity in $MeNO_2$ (10⁻⁴ mol dm⁻³ solution, 41 S cm² mol⁻¹) is low for a 1:1 electrolyte (usually ≈ 75 ---80 S cm² mol⁻¹), but this is possibly due to incomplete dissociation. The ¹H n.m.r. spectrum in (CD₃)₂CO is of no help as only one broad peak centred at $ca. \tau 6.5$ was observed; no sharpening of the spectrum was seen between -95 and

 $[Rh(^{15}NO)(S_2CNMe_2)_3][BF_4]$ (v at ≈ 1.525 —1.530 cm⁻¹). It therefore appears that the nature of (6) will only be determined by an X-ray structural analysis.

Complexes (3) reacted with Na[S2CNR2] nH2O, to give yellow crystals of $[Rh(PPh_3)_2(S_2CNR_2)_2][X]$ (R = Me or Et) {earlier ² incorrectly formulated as [Rh(NO)(PPh₃)₂- (S_2CNR_2) with loss of co-ordinated NO. Although such nitrosyl loss is uncommon, it also occurs in the reaction between (1) and CO under pressure (3 atm),* giving [Rh(CO)₂-(NCMe)₂][X] (7). Finally, the reaction of (3) with hydrazine in the presence of excess of triphenylphosphine gave good yields of [Rh(NO)(PPh₃)₃] (9); regeneration of (3) occurred by the reaction of (9) with [NO][X] in acetonitrile.

DISCUSSION

The unequivocal assignment of 'bent' or 'linear' co-ordination to the metal-nitrosyl group on the basis of any method other than X-ray crystallography is diffi-

* Throughout this paper: 1 atm = 101 325 Pa.

cult.⁴ and to date * attempts to obtain suitable crystals of the rhodium cations have not been successful. We have therefore used i.r. studies on the ¹⁴NO and corresponding ¹⁵NO complexes combined with ¹⁵N n.m.r. measurements to make a preliminary assignment of structures.

Haymore and Ibers⁵ suggested that $\nu(NO)$ can be used to assign the geometry of nitrosyls if corrections are made for the charge on the complex, for the nature of the other ligands present, and for the position of the central transition metal in the Periodic Table. Listed in Table 2 are the 'corrected' values for v(NO) which are, for (1), (3), and (5) respectively, 1 588, 1 564, and 1 630 cm⁻¹. The complexes [Rh(NO)(PPh₃)₃] {by analogy with [Ir(NO)(PPh₃)₃]}⁶ and [RhCl₂(NO)(PPh₃)₂]⁷ have been shown to contain linear and bent nitrosyl groups respectively, and have 'corrected' $\nu(NO)$ values of 1 620 and $1 602 \text{ cm}^{-1}$, which suggests that (1) and (3) may contain [NO]⁻ ligands whereas (5) may contain a linear metalnitrosyl arrangement. The latter conclusion seems likely in that $[Ru(NO)(dppe)_2][PF_6]$ (10) has ⁸ a trigonalbipyramidal structure with a linear [NO]⁺ group. The real $\nu(NO)$ values for (5) and (10) are 1 734 and 1 673 cm⁻¹, the former being higher because of the increased positive charge causing decreased back donation to the $\pi^*(NO)$ orbitals, which on correction are 1 630 and 1 633 cm^{-1} . On the basis of their 'corrected' v(NO) values, both (1) and (3), as well as (2) and (8), are likely to be square planar with bent, axial, [NO]⁻ groups, although insufficient corroborative data are available.

Attempts have recently been made 9 to assign bent or linear M–N–O structures on the basis of Δ , the difference between $\nu(^{15}NO)$ and $\nu(^{14}NO)$. It has been noted that, for a series of rhodium nitrosyl complexes, those containing 'linear' nitrosyls have values of Δ between 36 and 44 cm⁻¹ whereas those containing ' bent ' nitrosyls have $\Delta = 25-28 \text{ cm}^{-1}$. The values for (1), (3), (5), [Rh(NO)-(PPh₃)₃], and [RhCl₂(NO)(PPh₃)₂] are 31, 29, 30, 32, and 27 cm⁻¹. While the last complex contains a 'bent' nitrosyl, and has a Δ value in accord with this, the Δ values for (1), (3), (5), and [Rh(NO)(PPh₃)₃] are very similar and also between the two ranges given. For the new complexes reported here, then, measurement of Δ does not appear to be useful.

As noted earlier, labelling (6) with ¹⁵N seems to suggest that v(NO) occurs, for the unlabelled complex, at 1 545 cm⁻¹. If this is correct then such a low value for $\nu(NO)$ must suggest the presence of a bent metal-nitrosyl group. The isoelectronic species [Ru(NO)(S₂CNEt₂)₃] is octahed-

* This difficulty is underlined by the observation that crystals, which were considered to be (3), were shown by X-ray crystallo-graphy to be in fact $[Rh(NCMe)_3(NO)(PPh_3)_2]^{2+}$, *i.e.* an O_A complex with bent nitrosyl; the additional mol of MeCN is lost only on pumping (N. G. Connelly, P. T. Draggett, M. Green, B. A. Kelly, and A. J. Welch, unpublished work).

⁴ B. F. G. Johnson and J. A. McCleverty, Progr. Inorg. Chem., 1966, 7, 266; N. G. Connelly, Inorg. Chim. Acta Rev., 1972, 6, 47; B. A. Frenz and J. A. Ibers, M.T.P. Internat. Rev. Sci., Phys. Chem., Ser. 1, 1972, 11, 33, and refs. therein.

⁵ B. L. Haymore and J. A. Ibers, Inorg. Chem., 1975, 14, 3060. ⁶ V. G. Albano, P. Bellon, and M. Sansoni, J. Chem. Soc. (A), 1971, 2420.

J.C.S. Dalton

ral ¹⁰ with a linear $[NO]^+$ group trans to the sulphur atom of a unidentate dithiocarbamate ligand and has $\nu(NO)$ at 1.803 cm^{-1} . Complexes (6) must therefore either have a similar octahedral structure with a bent [NO]⁻ ligand, or a seven-co-ordinate structure with three chelating sulphur ligands as well as the bent nitrosyl group.

With ¹⁰³Rh having a nuclear spin of $I = \frac{1}{2}$ the possibility occurs that for ¹⁵N-labelled nitrosylrhodium complexes one can not only measure ¹⁵N chemical shifts by n.m.r. methods but also $I(^{103}Rh^{-15}N)$ which may be expected to show a large dependence on the hybridisation of the nitrosyl nitrogen atom. For [NO]⁺ complexes, with sp-hybridised nitrogen, $J(^{103}Rh^{-15}N)$ should differ considerably from those of [NO]⁻ complexes in which the nitrogen atom is sp^2 hydridised. We therefore attempted to record ¹⁵N n.m.r. spectra of the nitrosyl species reported herein. Although difficulty was found with the actual spectral measurements, (1) showed only one singlet at δ 964.0 p.p.m. (relative to [¹⁵NH₄]⁺). Whether the absence of ¹⁰³Rh-¹⁵N coupling is due to the nitrosyl group occurring as [NO]⁻ and that [NO]⁺ complexes will show such coupling is for speculation only. We hope to be able to report our findings at a later date.

EXPERIMENTAL

The preparation and purification of the complexes described were carried out under an atmosphere of dry $[{Rh(CO)_2Cl}_2], ^{11} [{Rh(1,5-C_8H_{12})Cl}_2], ^{12} and$ nitrogen; [Rh(1,5-C₈H₁₂)(NCMe)₂][BF₄] ¹³ were prepared by published procedures. The salts $[NO][PF_6]$ and $[NO][BF_4]$ were purchased from Ozark Mahoning Co., Tulsa, Oklahoma, and ^{[15}NO][BF₄] was prepared from Na^{[15}NO₂] purchased from the British Oxygen Co. Ltd. ¹⁵NO-Labelled nitrosyl complexes were prepared by exactly the same methods detailed below for the ¹⁴NO species. All the solvents were dried by standard methods and deoxygenated before use.

Infrared spectra were recorded on Perkin-Elmer PE 257 or PE 457 spectrophotometers and calibrated against the band at 1601 cm⁻¹ of polystyrene. Hydrogen-1 n.m.r. spectra were obtained on a Varian Associates HA 100 spectrometer at 100 MHz and ³¹P n.m.r. spectra on the Jeol PFT 100 spectrometer at 40.48 MHz. Microanalyses were by the staff of the Microanalytical Service of the School of Chemistry, University of Bristol.

[¹⁵N]Nitrosyl Tetrafluoroborate, [¹⁵NO][BF₄].—To a stirred mixture of water (0.25 cm³), sulphuric acid (0.35 cm³), and n-pentanol (1.5 cm³, 13.9 mmol) cooled to -10 °C was added dropwise a cooled (0 °C) solution of Na^{[15}NO₂] (0.95 g, 13.8 mmol) in water (4 cm³). After stirring for 90 min at room temperature the resulting solution was decanted from precipitated Na₂[SO₄]. The upper pale-yellow layer of crude amyl nitrite was separated and dried over anhydrous

⁷ S. Z. Goldberg, C. Kubiak, C. D. Meyer, and R. Eisenberg, Inorg. Chem., 1975, 14, 1650.

⁸ C. G. Pierpoint, A. Pucci, and R. Eisenberg, J. Amer. Chem. Soc., 1971, 93, 3050. ⁹ E. Miki, K. Mizumachi, and T. Ishimori, Bull. Chem. Soc.

Japan, 1975, **48**, 2975. ¹⁰ A. Domenicano, A. Vaciago, L. Zambonelli, P. L. Loader,

and L. M. Venanzi, Chem. Comm., 1966, 476. ¹¹ J. A. McCleverty and G. A. Wilkinson, Inorg. Synth., 1966, 8,

211.

 J. Chatt and L. M. Venanzi, J. Chem. Soc., 1957, 4735.
M. Green, T. A. Kuc, and S. H. Taylor, J. Chem. Soc. (A), 1971, 2334.

Mg[SO₄] for 1 h. The crude amyl nitrite was then added dropwise over 20 min to a stirred mixture of 40% aqueous HBF₄ (3.0 cm³, 13.6 mmol) and propionic anhydride (18 cm³) previously cooled to -15 °C; the reaction temperature was maintained below -10 °C. After stirring for 10 min at -10 °C the white precipitate of [¹⁵NO][BF₄] was filtered off, washed with propionic anhydride at -10 °C, and dried *in vacuo* at room temperature, yield 0.97 g (60%).

Tetrakis(acetonitrile)nitrosylrhodium Bis(tetrafluoroborate), $[Rh(NCMe)_4(NO)][BF_4]_2$ (1).—To a rapidly stirred solution of [Rh(1,5-C₈H₁₂)(NCMe)₂][BF₄] (304 mg, 0.8 mmol) in acetonitrile (1 cm³) at 0 °C was added [NO][BF₄] (94 mg, 0.8 mmol) in small portions over a period of 20 min. After stirring at room temperature for another 20 min, diethyl ether (20 cm^3) was slowly added to the deep emerald-green solution. Immediate precipitation of the product as either an emerald-green crystalline solid or as an oil which rapidly solidified on stirring occurred. The solid was washed with diethyl ether $(2 \times 10 \text{ cm}^3)$, CH₂Cl₂ $(2 \times$ 10 cm³), and diethyl ether $(2 \times 10 \text{ cm}^3)$, recrystallised from acetonitrile-diethyl ether, and dried in vacuo to yield the product as a dark green crystalline solid, yield 350 mg (93%). The complex is stable in dry air but in the presence of moisture slowly becomes brown. It is soluble in MeCN and MeNO₂ to give stable green solutions under nitrogen, but reacts with other polar solvents such as acetone and methanol to give brown solutions. The ButCN analogue was prepared, in 90% yield, from $[Rh(1,5-C_8H_{12})_2]$ -[X] in Bu^tCN, as a green crystalline solid with similar properties.

 $\hat{Tris}(acetonitrile) chloronitrosylrhodium Hexaftuorophos$ $phate, [RhCl(NCMe)_3(NO)][PF_6] (2).— To [{Rh(1,5-C_6H_{12})-Cl}_2] (0.5 g, 1.0 mmol) in MeCN (50 cm³) was added [NO] [PF_6] (0.18 g, 1.0 mmol) with rapid stirring. Addition of$ diethyl ether to the resulting green-brown solution gave agreen-brown oil which slowly solidified on stirring. Recrystallisation twice from acetonitrile-diethyl ether gavethe*product*as a green-brown solid, yield 0.75 g (86%). The $complex may also be prepared from [{Rh(CO)_2Cl}_2] in a$ similar fashion. It is soluble in acetonitrile to give browngreen solutions stable under nitrogen, but reacts with acetone and methanol to give brown solutions.

Bis (acetonitrile) nitrosylbis (triphenylphosphine) rhodium

Bis(tetrafluoroborate), $[Rh(NCMe)_2(NO)(PPh_3)_2][BF_4]_2$ (3).— To a stirred solution of PPh₃ (80 mg, 0.3 mmol) in MeCN (1 cm³) was added $[Rh(NCMe)_4(NO)][BF_4]_2$ (65 mg, 0.14 mmol). Slow dropwise addition of diethyl ether (12 cm³) to the resulting green solution gave the *product* as a green crystalline solid which was recrystallised from acetonitrile–diethyl ether and dried *in vacuo*, yield 115 mg (91%). The complex is soluble in MeCN, CH₂Cl₂, and acetone to give stable green solutions in the absence of water. The solid complex is stable in air. The complex $[Rh(AsPh_3)_2(NCMe)_2(NO)][BF_4]_2$ (4) may be made in a similar fashion in 94% yield.

A cetonitrilechloronitrosylbis(triphenylphosphine)rhodium Hexafluorophosphate, [RhCl(NCMe)(NO)(PPh₃)₂][PF₆] (8).— Method (a). To a vigorously stirred suspension of [RhCl-(NCMe)₃(NO)][PF₆] (0.11 g, 0.25 mmol) in CH₂Cl₂ (40 cm³) was added PPh₃ (200 mg, 0.76 mmol) in CH₂Cl₂ (10 cm³). After 30 min the brown solution was filtered and hexane (30 cm³) was added. Slow evaporation afforded the product as yellow-green crystals which were recrystallised from dichloromethane-hexane, yield 145 mg (66%). The complex is stable in air, and dissolves in acetonitrile and CH₂Cl₂ to give yellow-green solutions stable under nitrogen. Method (b). To a stirred solution of $[Rh(NCMe)_2(NO)-(PPh_3)_2][PF_6]_2$ (200 mg, 0.19 mmol) in CH_2Cl_2 (25 cm³) was added $[N(PPh_3)_2]Cl$ (110 mg, 0.19 mmol). The resulting yellow-green solution was filtered and hexane (50 cm³) was added to afford pale green crystals which were recrystallised from dichloromethane-hexane, yield 180 mg (91%).

Dichloronitrosylbis(triphenylphosphine)rhodium, [RhCl₂-(NO)(PPh₃)₂].—To a stirred solution of [Rh(NCMe)₂(NO)-(PPh₃)₂][PF₆]₂ (200 mg, 0.19 mmol) in MeCN (25 cm³) was added [N(PPh₃)₂]Cl (300 mg, 0.52 mmol). After 10 min filtration gave the complex as an orange-brown solid, yield 130 mg (92%). The complex [RhI₂(NO)(PPh₃)₂] was prepared in a similar fashion from [Rh(NCMe)₂(NO)(PPh₃)₂] [BF₄]₂ (250 mg, 0.265 mmol) and [NMe₄]I (150 mg, 0.75 mmol). The chocolate-brown product was recrystallised twice from dichloromethane-hexane, yield 200 mg (88%).

Bis[1,2-bis(diphenylphosphino)ethane]nitrosylrhodium Bis- $(tetrafluoroborate), [Rh(NO)(dppe)_2][BF_4]_2 (5).—To dppe (250 mg, 0.63 mmol) in MeCN (3 cm³) was added [Rh(NCMe)_4 (NO)][BF_4]_2 (130 mg, 0.28 mmol). On stirring for 10 min$ and subsequent addition of diethyl ether the product wasprecipitated as olive-green crystals, yield 250 mg (83%).The air stable complex is soluble in CH₂Cl₂ and MeCN to givegreen solutions which are moderately stable in air.

Reactions of $[Rh(NCMe)_2(NO)(PPh_3)_2][BF_4]_2$.—With N₂H₄ and PPh₃. To a rapidly stirred suspension of PPh₃ (100 mg, 0.42 mmol) in MeCN (5 cm³) and anhydrous hydrazine (0.15 cm³) was added the complex (100 mg, 0.11 mmol) stepwise during a period of 20 min. An immediate precipitate of brick-red solid formed. After stirring for another 20 min, the product was filtered off, washed with MeCN (2 × 10 cm³), and recrystallised from dichloromethane-hexane to give [Rh(NO)(PPh_3)₃] (9) as brick-red crystals, yield 92 mg (90%).

With Na[S₂CNMe₂]·2H₂O. To a stirred suspension of Na[S₂CNMe₂]·2H₂O (125 mg, 0.85 mmol) in CH₂Cl₂ (4 cm³) was added the complex (100 mg, 0.11 mmol) to give a redbrown solution. After stirring for another 10 min, and filtration, the volume of the solution was reduced *in vacuo* to *ca.* 2 cm³. Slow addition of diethyl ether (20 cm³) yielded a yellow crystalline solid which was recrystallised twice from dichloromethane-diethyl ether as $[Rh(PPh_3)_2-(S_2CNMe_2)_2][BF_4]$, yield 55 mg (56%).

Reactions of $[Rh(NCMe)_4(NO)][BF_4]_2$.—With Na $[S_2CNMe_2]^*$ 2H₂O. To a stirred suspension of the complex (133 mg, 0.281 mmol) in CH₂Cl₂ (1.5 cm³) was slowly added Na $[S_2-CNMe_2]^*$ 2H₂O (151 mg, 0.843 mmol). The resulting redbrown solution was stirred for 60 min, filtered, and the residue washed with CH₂Cl₂ (2 × 3 cm³). Addition of diethyl ether (20 cm³) to the combined filtrate yielded a brown solid which was recrystallised twice from dichloromethane-diethyl ether to give $[Rh(NO)(S_2CNMe_2)_3][BF_4]$ (6) as brown microcrystals, yield 88 mg (54%).

With CO under pressure. A suspension of the complex (150 mg, 0.32 mmol) in CH_2Cl_2 (20 cm³) was stirred for 48 h under CO (3 atm). The yellow solution was filtered, evaporated to *ca*. 10 cm³, and excess of diethyl ether was added. The purple precipitate was recrystallised from dichloromethane-diethyl ether to give $[Rh(CO)_2(NCMe)_2]$ - $[BF_4]$ (7) as purple-blue crystals, yield 65 mg (62%).

We thank Mr. W. R. Simpson for preliminary work, Professor E. W. Randall and Dr. G. E. Hawkes, Queen Mary College, London, for recording the ¹⁶N n.m.r. spectra, and the S.R.C. for support.

[6/927 Received, 14th May, 1976]